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I. INTRODUCTION 

Research context and novelty 

With a history of more than 150 years, organosilicon compound chemistry is still an important 

research topic nowadays. Among the pioneers of this field are J.F. Hyde and F.S. Kipping who 

during the 30’s–40’s discovered the siloxane polymers. Since then, siloxane polymers 

acknowledged a huge importance and are being encountered in many humankind activities. 

Organosilicons represent a bridge between the inorganic silicon and organic compounds. 

Distinct properties that make them special as compared with other molecules are their high 

conformational flexibility and low surface energy. These features originate from the nature of 

the Si-C bond and the organic groups (usually methyl) attached to the silicon atoms. Methyl 

groups hinder the assembly of silicones in well-organized solid structures, making them difficult 

to be crystallized. While the silicon atom as either silanes or siloxanes is present in many 

compounds or materials, it is still very rare in metal complexes. 

An original idea approached a few years ago in our group was to develop new ligands containing 

highly flexible and hydrophobic moieties, such as tetramethyldisiloxane, dimethyl/diphenyl 

silane, or trimethylsilyl (Turcan-Trofin et. al., 2018; Vlad et. al., 2018; Vlad et. al., 2017; 

Zaltariov et. al., 2016; Vlad et. al., 2016; Soroceanu et. al., 2015a; Vlad et. al., 2014). Despite 

their flexibility and hydrophobicity, it was possible to crystallize some of their metal complexes 

and analyze them through single-crystal X-ray diffraction. Several classes of new ligands and 

metal complexes containing the above-mentioned moieties were synthesized within our group 

and they showed interesting self-assembly ability (Turcan-Trofin et. al., 2019a; Soroceanu et. 

al., 2015b), catalytic (Zaltariov et. al., 2017; Soroceanu et. al., 2013a) or magnetic (Shova et. 

al., 2017a; Shova et. al., 2017b) properties, as well as biologic activity (Turcan-Trofin et. al., 

2019b; Zaltariov et. al., 2015a; Zaltariov et. al., 2015b). 

Within this doctoral thesis, it has been proposed the diversification of ligands and coordination 

compounds, which contain highly flexible and hydrophobic moieties mainly based on silicones. 

However, by combining hydrophobic segments with organic polar derivatives, the resulting 

compounds will possess an amphiphilic character and therefore, self-assembly capacity. Herein, 

we aimed in controlling the physical states of the new compounds both in solution as well as in 

bulk and studying the induced properties. It should be mentioned that too often the organic or 
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inorganic compounds are studied in solution or solid-state, but the intermediate physical states 

are ignored. Among the physical states that should be taken into account, is the amorphous 

phase, as either glassy or viscous states, liquid crystals with multiple mesophases, or 

polymorphs. Depending on the control of these physical states we attempted in finding their 

potential applications. 

Research objectives  

The objectives of this doctoral thesis consisted of: 

• The synthesis of ligands containing silicon or alkylic moieties and their structural 

characterization; 

• The complexation of metal ions with the synthesized ligands; 

• The study of self-assembly capacity both in solution and in bulk; 

• The study of phase transitions-induced properties: optical, magnetical or electrical; 

• Approaching the identified properties from the potential application view. 

The main results  

Six new classes of organic or inorganic compounds containing silicon were synthesized: 1,3-

bis(3-aminopropyl)tetramethyldisiloxane-based Schiff bases (I) and their metal complexes (II), 

ethers of salicylaldehyde derivatives and their further derivatization (III), S-alkylated 

derivatives of 5-amino-2-mercapto-1,3,4-thiadiazole (IV) and their Au(II) complexes (V), and 

their Schiff bases with 3,5-dibromosalicylaldehyde (VI). To highlight their peculiarities induced 

by silicon fragments, alkyl analogues were synthesized as benchmarks. In a new approach for 

making new ligands, a dicarboxylic acid through 1,3-dipolar cycloaddition (Huisgen) and a new 

imine having tris(trimethylsiloxy)silane moiety were synthesized. 

For the first class of compounds (I), it has been shown through spectrophotometric techniques 

their metal binding capacity (Damoc et. al., 2020). It was found that highly flexible ligands have 

higher binding capacity as compared with rigid ligands. Moreover, it was identified the 

possibility of thermodynamic control of chemical reactions through micellization processes. The 

metal complexes of the first class of ligands (II), had liquid crystal behaviour, i.e. nematic 

mesophase, and exhibited good electric response at external electrical fields as well as 

aggregation-induced emission (Damoc et. al., 2021). They behaved similarly as lyotropic liquid 

crystals in solution and showed nematic biaxial mesophase, having an additional orthogonal 
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directional order over the main. Within the third class (III) was evidenced one of the biggest 

silacycles and its reaction pathways through experimental and theoretical studies (Damoc et. al., 

2022). For the fourth class (IV), photophysical processes such as double fluorescence, 

phosphorescence, and excited-state intermolecular proton transfer triggered by aggregation 

were found (Damoc et. al., 2023). For the fifth and sixth classes (V) and (VI) only the synthesis 

procedures and their structural characterization were presented. Nonetheless, preliminary 

studies indicated their potential as thermal actuators relying on LC property, energy-storage 

materials, and photoactuators. 

The thesis itself has an interdisciplinary character, approaching several fields such as organic or 

inorganic chemistry, supramolecular and colloid chemistry and spectroscopy, or materials 

chemistry. Some of these results were not published because of the time and complexities. 

III. ORIGINAL CONTRIBUTION  

III.1. 1,3-Bis(3-aminopropyl)tetramethyldisiloxane-based Schiff bases  

This chapter is committed to the synthesis of new Schiff bases starting from 1,3-bis(3-

aminopropyl)tetramethyldisiloxane and several aldehydes, and their comparison with similar 

Schiff bases derived from aliphatic amines. The new compounds were synthesized through the 

reaction of 1 equivalent of siloxane diamine and 2 equivalents of the corresponding aldehyde 

(Scheme 1). 

Since the alkyl spacers do not possess flexibility as high as siloxanes, H2L7 was crystallized and 

analyzed through single-crystal X-ray diffraction. As far as can be observed (Figure 1), this 

compound has a linear structure and a trans configuration. 

 

Figure 1. The X-ray diffraction molecular structure of H2L7. The intramolecular bond length O1-H1∙∙∙N1 

is 2.584 Å. 
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Scheme 1. The synthesis of new Schiff bases starting from siloxane and aliphatic diamines.  

To observe the influence of siloxane fragments over the Schiff bases formation reaction, the rate 

constants for H2L1, H2L6, and H2L7 synthesis were determined. The kinetic measurements have 

revealed that siloxane diamine lies between hexamethylenediamine and 

dodecamethylenediamine in terms of reactivity. The highest rate constant was for 

hexamethylenediamine (5.32 × 10-4 s-1). The lower reactivity of siloxane diamine (2.67 × 10-4 s-1) 

was assigned to its surface tension (24.93 mN/m), lower than hexamethylenediamine one (35.3 

mN/m), which pushed it at the interface air/solvent. To get further information about these 

processes, another experiment was performed. Using 1H NMR spectroscopy, the formation 

reactions of H2L3 and H2L4 were compared with each other. Measurements have revealed a 

slower reaction of siloxane diamine than the aliphatic one. For the latter the reaction time is fast 

(1000 min) but with a lower conversion (85 %). For the former, the reaction ended after 2000 

minutes, but with a higher conversion (97.6 %). The higher conversion for the siloxane diamine 

was assigned to the siloxane fragment, which pushed the molecule at the interface, hindering 

the water access and reaction reversibility. This approach can be a new way of controlling 

chemical reactions through micellization processes (Figure 2). 
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Figure 2. Schematic overview of the thermodynamic control through micellization processes in DMF 

(γ: 37.1 mN/m). APDS (1,3-bis(3-aminopropy)tetramethyldisiloxane); γ (surface tension); HMDA 

(hexamethylenediamine). 

The final goal of this first study was to evaluate the capacity of the new ligands to bind metal 

ions. Co2+, Ni2+, Cu2+, and Zn2+ ions were chosen. The complexation reaction was studied in a 

mixture of methanol-DMF at room temperature for both siloxane- and alkyl-containing Schiff 

bases. The binding constants vary as follows: CuL1 > NiL1 > ZnL1 > CoL1 (Table 1). These 

values obey the Irving and Williams series (Irving și Williams, 1953; Jadhav et. al., 2015). The 

elongation and compression effects, as the Jahn-Teller theory says, affect the donor-acceptor 

interaction, especially in the case of Cu2+ (Pui și Cozma, 2003). Similarly, the length and 

flexibility of ligands may be among the key factors. In the dimethyldisiloxane unit, the rotational 

energy barrier of the Si-O-Si bond is close to 0 kJ/mol. Therefore, the complexation of metal 

ions with ligands containing the tetramethyldisiloxane moiety allows for easier stabilization of 

the chelated metal complexes in either the cis or trans configuration. On the contrary, using 

alkyl spacers, because their rotational energy barrier is 14 kJ/mol, can lead to difficult 

stabilization of metal complexes with ligands containing this moiety (Dalia et. al., 2018). Hence, 

as can be concluded from Table 1, the binding constants of Schiff bases with alkyl spacers have 

lower values than those with siloxane spacers. 
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Table 1. Binding constants (K) determined by the Hildebrand-Benesi method. 

Compound Log K  

CuL1 4.52 

ZnL1 4.42 

NiL1 4.47 

CoL1 3.88 

NiL2 4.37 

CuL3 4.47 

CuL4 3.75 

CuL5 4.34 

CuL6 4.34 

CuL7 4.40 

 

III.2. Metal complexes of 1,3-bis(3-aminopropyl)tetramethyldisiloxane-based 

Schiff bases  

In the following study, coordination compounds of some of the previously presented Schiff 

bases are approached from a supramolecular point of view. Six new coordination compounds 

were synthesized by reacting the Schiff bases prepared as above with the corresponding metal 

ion in a 1:1 ratio (Scheme 2). 

 

Scheme 2. Representation of the reactions leading to the new coordination compounds. 



13 

 

To compare the properties of CoL1, another cobalt complex was synthesized using the ligand 

from the condensation reaction of 3,5-dichlorosalicylaldehyde with hexamethylenediamine and 

Co(Ac)2x4H2O (Scheme 3). The crystallographic analysis indicates the formation of a dinuclear 

complex, in which the cobalt ions are interconnected, both by two L6 ligand molecules and by 

a bridging acetate ion, [μ-acetato-Co2(L6)2]. The oxidation state of the metal ions is mixed, 

respectively Co(II) and Co(III), and the coordination geometry of the cobalt ions is square 

pyramidal in the trans configuration. However, taking into account the poor quality of collected 

data, a high-resolution X-ray diffraction analysis is needed. DSC analysis has not shown any 

phase transition for [μ-acetato-Co2(L6)2] in the studied temperature range, -150 - +200 oC. 

(Figure 3a). The endothermal peak at 79 oC is associated with solvent losses (-1.28 %), in 

agreement with thermogravimetric analysis. This information was strengthened by POM 

analysis, where any phase transition has not been observed. 

 

 

Scheme 3. Synthesis of the reference cobalt complex and its molecular structure based on the collected 

data (square brackets represent the hexylene moiety). 

Instead, the CoL1 complex shows multiple phase transitions: glass transition at room 

temperature, mesomorphic features above 110 oC, and izotropization 201 oC (Figures 3b–g). It 

can be concluded that using tetramethyldisiloxane moiety is a straightforward approach for bulk 

self-assembly. Even if the phase transition temperature to liquid crystals is high, these are stable 

at room temperature for days. 
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Figure 3. DSC curve for [μ-acetato-Co2(L6)2] (a); DSC curve for CoL1 (b); POM images of CoL1 

complex in different physical states: glassy state at room temperature, 10x (c); crystalline powder at 

room temperature, 10x (d); nematic LCs seen with aligned polarizers at 150 oC, 10x (e); dark field at 150 
oC, 50x (f); and cross polarizers at 150 oC, 10x (g). 

III.3. Silicone derivatives etherification  

To enlarge the range of ligands containing silicon in their structure with metal ions binding 

ability, especially Pt2+, new aldehydes were designed to be reacted with amines when obtaining 

imines. While the organic synthesis was successful, the complexation reaction with Pt2+ did not 

take place. The Pt2+ ions catalyzed these reactions to new unexpected organic structures. One of 

these structures was a silacycle, which is one of the biggest reported in the literature (Han et al., 

2020; Wang et al., 2020; Lips et al., 2014). Starting from 2.5 equivalents of phenolic derivatives 
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and 1 equivalent of silicon halide derivatives, and using K2CO3 and DMF, three new ethers were 

obtained (Scheme 4). 

 

 

Scheme 4. Derivatization of silicon-containing compounds through etherification reactions. 

To obtain a new imine with metal ions binding capacity, bis-aldehyde L12 was reacted with 3 

eq. of 2-aminophenol, obtaining bis-imine L15 (Scheme 5). 

 

Scheme 5. Bis-aldehyde L12 reaction with 2-aminophenol leading to the bis-imine L15. 

Bis-imine L15 was further reacted with Pt(acac)2, to obtain new Pt(II) complexes. All the 

analyses indicated a catalytic activity of the Pt(II) salt, leading to a fourteen-membered silacycle 

(Scheme 6). 

 

Scheme 6. The fourteen-membered silacycle L16 synthesis starting from bis-imine L15 and Pt(acac)2. 
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Taking into account all the above-mentioned data, a reaction pathway is proposed (Scheme 7). 

In the first step, an intermediate Pt(II) complex is supposed which undergoes an imine bond 

cleavage induced by the Pt2+ ions and resulting in the bis-aldehyde L12 and two molecules of 2-

aminophenol. Looking at the silacycle L16 structure, it can be considered that either 

acetylacetone or acetone can participate in its reaction. Acetylacetone can participate by 

methylene active group (Knoevenagel condensation) or by a methyl group (aldol condensation) 

(Martichonok et al., 2014). Acetone can participate only in aldol condensation as an enol 

tautomer (Bohre et al., 2015). Performing several experiments, it was found that acetone is 

involved in the cyclization process through a double aldol condensation. In the third step, the 

remaining carbonyl group would presumably react with a 2-aminophenol molecule leading to 

the silacycle L16. 

 

 

Scheme 7. The proposed reaction pathway to the silacyle L16. 
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III.4. S-alkylation of silicon derivatives with 5-amino-2-mercapto-1,3,4-

thiadiazole 

To obtain new performant luminophores, the 5-amino-2-mercapto-1,3,4-thiadiazole was S-

alkylated with aliphatic halides containing silane (H2L17, H2L18, H4L19), disiloxane (H2L20), or 

hydrocarbons (H2L21, H2L22) (Scheme 8). Aside from the S-alkylation products, N-alkylation 

by-products were found in each of the reactions (about 2%) and removed while washing with 

acetone and petroleum ether. The two classes of weakly conjugated units, namely, permethylated 

silicon- and hydrocarbon-based compounds, were chosen to compare their optical properties. 

 

Scheme 8. 5-amino-2-mercapto-1,3,4-thiadiazole S-alkylation with aliphatic halides. 

In the crystal structure of compounds H2L17, H4L20, and H4L22, intermolecular N-H···N 

hydrogen bonds that create a 2D supramolecular architecture were highlighted. On the other 

hand, the crystal structure of the compound H2L18 is based on a 1D architecture. A special case 

is that of the compound H4L19. The intermolecular interactions in this compound are 

supplemented by π-π ones between the thiadiazole rings with centroid-centroid distances of 

3.772(3) Å, giving rise to a 3D supramolecular structure.  
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It has been revealed that silicon-containing compounds have twisted supramolecular structures, 

while hydrocarbon-containing compounds have planar structures. All six S-alkylated 

aminothiadiazoles have no emission in solution, but only through their aggregation or in the 

solid state. They have multiple excitation-dependent emissions in Vis and NIR domains and 

depend on the dispersion medium too (Figure 4).  

 

Figure 4. Graphical representation of the aggregation-induced emission. In solid state is the same 

behaviour as in water or CHCl3. 

Time-resolved spectroscopy revealed two fluorescence, both blue and green, and NIR 

phosphorescence (Figure 5). By transient absorption analysis were found high-energy excited 

state processes, which were associated with pseudo-ESIPT (excited state intermolecular proton 

transfer), due to the strong intermolecular hydrogen bonding N-H···N. Twisted structures were 

found to have higher quantum yields than planar structures. The excited-state absorption bands, 

the excitation-dependent emission lifetimes, the excitation-dependent quantum yield, and the 

differences between absorption and excitation spectra supported the anti-Kasha proton transfer 

(i.e., in the high-energy excited states). 
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Figure 5. Schematic representation of the proposed emission pathways (up) and solid-state emission 

spectra (bottom) of S-alkylated aminothiadiazoles. 

III.5. Gold (II) complexes of the S-alkylated 5-amino-2-mercapto-1,3,4-

thiadiazoles  

The next synthetic pathway after the aminothiadiazoles S-alkylation with silicone or aliphatic 

haloderivatives was the complexation of some metal ions. Since the Aun+ ions are thiophilic 

(Pyykkö, 2004), but also because of their known photophysical properties (Fujisawa et al., 2018; 

Li et al., 2019), they were selected for the complexation reaction. Three S-alkylated 

aminothiadiazoles, H2L17, H2L18, and H2L24, were reacted with HAuCl4 when obtaining new 

dinuclear gold complexes: [(HL17)2Au2Cl2], [(HL18)2Au2Cl2], and [(HL24)2Au2Cl2] (Scheme 

9). 

The three new gold complexes were isolated as red acicular crystals and analyzed by single-

crystal X-ray diffraction (Figure 6). It can be noticed their similar structures. Each of the Au2+ 

ions has coordination number 4 and square planar geometry. The initial Au3+  ions were reduced 

to Au2+. Unexpectedly, Au2+ do not coordinate with the S atom, but with an N atom of the 
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thiadiazole ring, to the -NH2 group through mono-deprotonation, keeps a Cl atom, and forms a 

metallic bond with another Au2+ ion. The Au-Au bond takes values of 2.5383(5) Å for 

[(HL17)2Au2Cl2], 2.5344(14) Å for [(HL18)2Au2Cl2], and 2.5293(18) Å for [(HL24)2Au2Cl2], 

and all structures are in trans configuration. Through Au-Au bonds, two five-membered chelate 

rings are generated.  

 

Scheme 9. Dinuclear Au(II) complexes synthesis. 

 

 

Figure 6. Au(II) complexes molecular structures determined through X-ray diffraction: [(HL24)2Au2Cl2] 

(a); [(HL18)2Au2Cl2] (b); and [(HL17)2Au2Cl2] (c). 
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III.6. 3,5-Dibromosalicylaldehyde-based Schiff bases with the S-alkylated 5-

amino-1,3,4-thiadiazoles  

After identifying the LC property for the metal complexes with salen-type ligands, other 

structures containing silicon moieties were designed to present mesophases. To fulfil this 

purpose, the S-alkylated aminothiadiazoles, H2L17, H2L18, H4L19, și H4L20, were reacted with 

3,5-dibromosalicylaldehyde and obtained four new imines (Schemes 10−11): two mono-imines 

(HL25 and HL26) and two bis-imines (H2L27 and H2L28). 

 

Scheme 10. HL25 and HL26 synthesis. 

 

Scheme 11. H2L27 and H2L28 synthesis. 

HL25 and HL26 were crystallized and analysed using X-ray diffraction. The particular interest 

was to evaluate their supramolecular structures and check if there are π-π interactions, of 

particular interest for inducing improved electrical properties. For HL26, π-π interactions take 

place between an aromatic ring and a thiadiazole ring with centroid-centroid distances of 

3.735−3.797 Å (Figure 7). For HL25, π-π interactions were not identified. However, HL25 has 

a chiral helical supramolecular structure (Figure 8). Its crystalline structure consisted only of 

the R enantiomer (right-handed). The helical pitch, which describes the distance between two 

molecules within the spiral is 5.856(3) Å. This property will be translated to the LC property, as 

shown below. 
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Figure 7. HL26 2D supramolecular structure. 

 

 

 

 

 

  

 

Figure 8. HL25 supramolecular chiral structure (R). 
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Several phase transitions were identified through DSC analysis. All imines have glass transition 

in the range of 10−30 oC. Within the range of 50−140 oC, each compound has several 

endothermal phase transitions. The multiple phase transitions were assigned to the LC property 

and izotropization. The izotropization occurs at 101.2 oC (ΔH,14,45 J/g). On the second heating, 

nematic columnar LCs appeared at 30 oC, and the phase distribution is homogenous (Figure 

9a). Around 40 oC, nematic chiral mesophases (Figures 9b and c) and smectic phases (Figure 

9d) appear at the same time, and their distribution is not homogenous. Nematic droplets 

appeared at 85 oC (ΔH,-4.48 J/g), regardless of the heating or cooling cycle (Figures 9e and f). 

 

Figure 9. HL26 LCs seen by optical polarized microscopy: nematic columnar at 30 oC (a); nematic chiral 

at 40 oC (b); nematic chiral droplets at 40 oC (c); smectic mesophase at 40 oC (d); nematic droplets seen 

with aligned polarizers (e) and dark field (f) at 85 oC. Images are recorded with a resolution of 0.02 mm. 
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III.7. New silicon derivatives bearing organic moieties  

To obtain a new dicarboxylic acid, the 1,3-bis(chloromethyl)tetramethyldisiloxane was reacted 

with NaN3 in DMF and using tetrabutylammonium fluoride as a phase transfer reagent, when 

obtaining a bis-azide. The latter was isolated and further reacted with propiolic acid using a 

Cu(I) catalyst generated in situ by the reduction of anhydrous CuSO4 with ascorbic acid 

(Rostovtsev et al., 2002). This procedure afforded the dicarboxylic acid H2L29 (Scheme 12). 

 

Scheme 12. H2L29 synthesis through 1,3-dipolar Huisgen cycloaddition. 

An interesting particularity is the Si-O-Si valence angle of 180o (Figure 10). This is rarely seen 

for the siloxane compounds (Glidewell și Liles, 1976), the most usual value being around 145o. 

A value of 180o of the angle would suggest a 100% contribution of the π component in the Si-

O bond. However, the Si-O length value is 1.6102(1) Å, very slightly modified than in other 

compounds, which does not support the aforementioned hypothesis.  

 

Figure 10. The molecular structure of HL29 determined through single-crystal X-ray diffraction. 
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The next synthesized silicon derivative was a tris(trimethylsiloxy)silane. By reacting the 3-

aminopropyltris(trimethylsiloxy)silane with a 1,2,4-triazole having a free formyl group, the 

imine HL30 was obtained (Scheme 13). 

 

Scheme 13. HL30 synthesis. 
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IV. GENERAL CONCLUSIONS  

A series of organosilicon compounds, which contain functional groups with metal ions binding 

capacity were developed and for some of them were isolated the corresponding coordination 

compounds. The compounds, consisting of ligands and coordination compounds, are originally 

by the nature of chemically associated structural fragments, one of which is always a unit 

containing silicon (silane or disiloxane), which is the central core of the doctoral thesis. Known 

to be highly flexible and hydrophobic, these moieties are physically incompatible with any other 

organic or inorganic structures and by their chemical coupling provide several unique 

peculiarities to the new compounds. Instead, a major drawback is the limitation of new 

compounds to crystallize creating a huge challenge in their isolation and characterization. 

Experimental procedures were developed for isolating these classes of compounds in the 

crystalline state and analysing them by X-ray diffraction. Several of their properties (thermal, 

optical, electrical, magnetical) were studied in a strict relationship with their self-assembly 

ability in solution or bulk, and for some of them, the potential applications were identified. 

The personal contributions are: 

1.  The synthesis of new organosilicon compounds and their metal complexes 

Using 7 commercially silicon-based compounds, 1,3-bis(3-aminopropyl)tetramethyldisiloxane, 1,3-

bis(2-aminoethylaminomethyl)tetramethyldisiloxane, 1,3-bis(chloromethyl)tetramethyldisiloxane, 

bis(chloromethyl)dimethylsilane, (3-chloropropyl)trimethylsilane, chloromethyltrimethylsilane, 3-

aminopropyltris(trimethylsiloxy)silane, the following new ligands and coordination compounds were 

designed: 

●7 salen-type Schiff bases having tetramethyldisiloxane spacer; 

●9 coordination compounds; 

● a fourteen-membered silacycle, one of the biggest reported; 

● a dicarboxylic acid with siloxane spacer having a Si-O-Si valence angle of 180 o;  

● a silanol molecule through photocleavage of the Si-O-Si bond; 

● an imine having a tris(trimethylsiloxy)silane tail; 

●3 dinuclear Au(II) complexes;  

● recording 22 new compounds in the crystallographic databases, CCDC. 
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2. Highlighting particularities of both synthesis procedures and the resulting compounds 

The chemical coupling of highly flexible and hydrophobic silicon-containing moieties with 

polar organic molecules resulted in: 

●thermodynamic control of chemical reactions;  

●amphiphilic character due to the polarity difference between the two segments; 

●self-assembly capacity in solution (from micelles to lyotropic liquid crystals); 

●glass transition temperature and amorphous-crystalline duality; 

●liquid crystal behaviour with multiple mesophases. 

Most of these particularities were evidenced by comparison with benchmark compounds. 

3. Finding new properties for potential applications  

●aggregation induced-emission (micelles, liquid crystals, crystals); 

●controlling the physical states by using external stimuli, such as magnetic ones; 

●controlling magnetic properties through the compounds’ physical state (e.g., paramagnetic in 

the crystalline state and superparamagnetic within nematic mesophase); 

●controlling dielectric properties through the compounds’ physical state (higher dielectric 

permittivity within the amorphous state or liquid crystal than crystalline state). 

While some of the results corresponded to the initial aim, others generated new ideas being 

exciting platforms for new research. Some of the presented results were disseminated within the 

scientific community being the subject of 4 articles and 5 communications, and others will be 

published soon. 
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